Understand the environmental tradeoffs and resource demand of direct air capture technologies through a comparative life cycle assessment


  • 1.

    IPCC Climate change 2014: Synthesis report (eds Core Writing Team, Pachauri, RK & Meyer, LA) (IPCC, 2014).

  • 2.

    IPCC Special report on global warming of 1.5 ° C (eds Masson-Delmotte, V. et al.) (OMM, 2018).

  • 3.

    Socolow, R. et al. Direct capture of CO in the air2 With chemicals: a technology assessment for the APS group on public affairs (American Society of Physics, 2011).

  • 4.

    Minx, JC et al. Negative Emissions — Part 1: Research Landscape and Synthesis. About. Res. Lett. 13, 63001 (2018).

    Item

    Google Scholar

  • 5.

    Hanna, R., Abdulla, A., Xu, Y. & Victor, DG Emergency deployment of direct air capture in response to the climate crisis. Nat. Common. 12, 368 (2021).

    Item

    Google Scholar

  • 6.

    IPCC Special report on carbon dioxide capture and storage (eds Metz, B. et al.) (Cambridge Univ. Press, 2005).

  • 7.

    Wang, T., Lackner, KS & Wright, A. Moisture-varying absorbent for capturing carbon dioxide from ambient air. About. Sci. Technol. 45, 6670-6675 (2011).

    Item

    Google Scholar

  • 8.

    Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris objectives: energy transition and the role of direct air capture. Climate change 144, 181-193 (2017).

    Item

    Google Scholar

  • 9.

    Viebahn, P., Scholz, A. & Zelt, O. The potential role of direct air capture in the German energy research agenda – results of a multidimensional analysis. Energies 12, 3443 (2019).

    Item

    Google Scholar

  • ten.

    Fasihi, M., Efimova, O. & Breyer, C. Technico-economic evaluation of CO2 direct air collection installations. J. Clean. Prod. 224, 957-980 (2019).

    Item

    Google Scholar

  • 11.

    Sanz-Pérez, ES, Murdock, CR, Didas, SA & Jones, CW Direct CO capture2 ambient air. Chem. Tower. 116, 11840–11876 (2016).

    Item

    Google Scholar

  • 12.

    Salmón, I., Cambier, N. & Luis, P. CO2 capture by alkaline solution for the production of carbonate: comparison between a packed column and a membrane contactor. Appl. Sci. 8, 996 (2018).

    Item

    Google Scholar

  • 13.

    Maison, KZ et al. Economic and energy analysis of CO capture2 ambient air. Proc. Natl Acad. Sci. United States 108, 20428-20433 (2011).

    Item

    Google Scholar

  • 14.

    Fuhrman, J. et al. Food-energy-water implications of negative emission technologies in the + 1.5 ° C future. Nat. Clim. Switch ten, 920-927 (2020).

    Item

    Google Scholar

  • 15.

    Keith, DW, Holmes, G., St. Angelo, D. & Heidel, K. A CO capture process2 of the atmosphere. Joule 2, 1573-1594 (2018).

    Item

    Google Scholar

  • 16.

    Realmonte, G. et al. The answer to “The high energy and material requirements for direct air capture require further analysis and R&D.” Nat. Common. 11, 3286 (2020).

    Item

    Google Scholar

  • 17.

    Chatterjee, S. & Huang, K.-W. Unrealistic need for energy and materials for direct air capture in deep attenuation pathways. Nat. Common. 11, 3287 (2020).

    Item

    Google Scholar

  • 18.

    de Jonge, MM, Daemen, J., Loriaux, JM, Steinmann, ZJ & Huijbregts, MA Life cycle carbon efficiency of direct air capture systems with strong hydroxide absorbents. Int. J. Greenh. Gas control 80, 25-31 (2019).

    Item

    Google Scholar

  • 19.

    Liu, CM, Sandhu, NK, McCoy, ST & Bergerson, JA A Life Cycle Assessment of Greenhouse Gas Emissions from Direct Air Capture and Fischer-Tropsch Fuel Production. To support. Energy fuels 4, 3129–3142 (2020).

    Item

    Google Scholar

  • 20.

    Deutz, S. & Bardow, A. Life cycle evaluation of an industrial direct air capture process based on temperature-vacuum modulated adsorption. Nat. Energy 6, 203-213 (2021).

    Item

    Google Scholar

  • 21.

    Budinis, S. Direct air capture (International Energy Agency, 2020).

  • 22.

    Negative emission technologies and reliable sequestration: a research program (Press of the national academies, 2019); https://doi.org/10.17226/25259

  • 23.

    Hertwich, EG et al. Integrated life cycle assessment of electricity supply scenarios confirms the global environmental advantage of low carbon technologies. Proc. Natl Acad. Sci. United States 112, 6277-6282 (2015).

    Item

    Google Scholar

  • 24.

    McQueen, N. et al. Cost analysis of direct air capture and sequestration coupled with low carbon thermal energy in the United States. About. Sci. Technol. 54, 7542-7551 (2020).

    Item

    Google Scholar

  • 25.

    Bahar, H. & Bojek, P. Concentrated solar energy (CSP) (International Energy Agency, 2020).

  • 26.

    Sandalow, D., Friedmann, J., McCormick, C. & McCoy, S. Direct capture of carbon dioxide from the air (Innovation for Cool Earth Forum, 2018).

  • 27.

    Baciocchi, R., Storti, G. & Mazzotti, M. Process design and energy requirements for capturing carbon dioxide from the air. Chem. Ing. To treat. 45, 1047-1058 (2006).

    Item

    Google Scholar

  • 28.

    Singh, B., Strømman, AH & Hertwich, EG Comparative assessment of the impact of the CSC portfolio: a life cycle perspective. Energy Procedia 4, 2486-2493 (2011).

    Item

    Google Scholar

  • 29.

    Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).

    Item

    Google Scholar

  • 30.

    Querini, F., Dagostino, S., Morel, S. & Rousseaux, P. Greenhouse gas emissions from electric vehicles associated with wind and photovoltaic electricity. Energy Procedia 20, 391-401 (2012).

    Item

    Google Scholar

  • 31.

    Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and use in the chemical industry. Proc. Natl Acad. Sci. United States 116, 11187–11194 (2019).

    Item

    Google Scholar

  • 32.

    Gibon, T., Arvesen, A. & Hertwich, EG Life cycle assessment demonstrates environmental co-benefits and tradeoffs of low carbon electricity supply options. Renew. Support Energy Rev. 76, 1283-1290 (2017).

    Item

    Google Scholar

  • 33.

    Particle emissions excluding road transport exhaust: an ignored environmental policy challenge (Organization for Economic Co-operation and Development, 2020).

  • 34.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Negative biomass emissions difficult to reconcile with planetary limits. Nat. Clim. Switch 8, 151-155 (2018).

    Item

    Google Scholar

  • 35.

    Creutzig, F. et al. Consider sustainability thresholds for BECCS in IPCC and biodiversity assessments. Glob. Change Biol. Bioenergy 13, 510-515 (2021).

    Item

    Google Scholar

  • 36.

    Gabrielli, P., Gazzani, M. & Mazzotti, M. The role of carbon capture and use, carbon capture and storage and biomass to enable net-zero-CO2 chemical industry emissions. Ind. Ing. Chem. Res. 59, 7033-7045 (2020).

    Item

    Google Scholar

  • 37.

    Davis, SJ et al. Net zero emission energy systems. Science https://doi.org/10.1126/science.aas9793 (2018).

  • 38.

    Carton, W., Lund, JF & Dooley, K. Canceling equivalence: rethinking carbon accounting for simple carbon elimination. Before. Clim. https://doi.org/10.3389/fclim.2021.664130 (2021).

  • 39.

    Kearns, J. et al. Develop a coherent database for regional geological CO2 storage capacity worldwide. Energy Procedia 114, 4697–4709 (2017).

    Item

    Google Scholar

  • 40.

    Arvidsson, R. et al. Environmental assessment of emerging technologies: recommendations for a prospective LCA. J. Ind. School. 22, 1286-1294 (2018).

    Item

    Google Scholar

  • 41.

    ISO 14044: 2006 Umweltmanagement — Ökobilanz — Anforderungen und Anleitungen (International Organization for Standardization, 2006).

  • 42.

    ISO 14040: 2006 Umweltmanagement — Ökobilanz — Grundsätze und Rahmenbedingungen (International Organization for Standardization, 2006).

  • 43.

    Direct air capture to help reverse climate change. Climeworks https://www.climeworks.com/page/co2-removal (2020).

  • 44.

    von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle analysis of CO2 capture and use: a tutorial review. Chem. Soc. Tower. 43, 7982-7994 (2014).

    Item

    Google Scholar

  • 45.

    Hauschild, MZ et al. Identify existing best practices for characterization modeling in life cycle impact assessment. Int. J. Life cycle assessment. 18, 683-697 (2013).

    Item

    Google Scholar

  • 46.

    Holmes, G. et al. Results of the outdoor prototype for the direct atmospheric capture of carbon dioxide. Energy Procedia 37, 6079-6095 (2013).

    Item

    Google Scholar

  • 47.

    Pehnt, M. & Henkel, J. Life cycle assessment of carbon dioxide capture and storage of lignite-fired power plants. Int. J. Greenh. Gas control 3, 49-66 (2009).

    Item

    Google Scholar

  • 48.

    Steubing, B., Wernet, G., Reinhard, J., Bauer, C. & Moreno-Ruiz, E. The ecoinvent version 3 database (part II): analysis of LCA results and comparison with the version 2. Int. J. Life cycle assessment. 21, 1269-1281 (2016).

    Item

    Google Scholar

  • Check Also

    Water problems, power cuts and broken promises cloud AAP’s outlook in Rajinder Nagar’s secondary polls

    Partial polls for the Assembly seat of Rajinder Nagar are scheduled for June 23, 2022. …

    Leave a Reply

    Your email address will not be published.