IPCC Climate change 2014: Synthesis report (eds Core Writing Team, Pachauri, RK & Meyer, LA) (IPCC, 2014).
IPCC Special report on global warming of 1.5â° C (eds Masson-Delmotte, V. et al.) (OMM, 2018).
Socolow, R. et al. Direct capture of CO in the air2 With chemicals: a technology assessment for the APS group on public affairs (American Society of Physics, 2011).
Minx, JC et al. Negative Emissions â Part 1: Research Landscape and Synthesis. About. Res. Lett. 13, 63001 (2018).
Google Scholar
Hanna, R., Abdulla, A., Xu, Y. & Victor, DG Emergency deployment of direct air capture in response to the climate crisis. Nat. Common. 12, 368 (2021).
Google Scholar
IPCC Special report on carbon dioxide capture and storage (eds Metz, B. et al.) (Cambridge Univ. Press, 2005).
Wang, T., Lackner, KS & Wright, A. Moisture-varying absorbent for capturing carbon dioxide from ambient air. About. Sci. Technol. 45, 6670-6675 (2011).
Google Scholar
Marcucci, A., Kypreos, S. & Panos, E. The road to achieving the long-term Paris objectives: energy transition and the role of direct air capture. Climate change 144, 181-193 (2017).
Google Scholar
Viebahn, P., Scholz, A. & Zelt, O. The potential role of direct air capture in the German energy research agenda – results of a multidimensional analysis. Energies 12, 3443 (2019).
Google Scholar
Fasihi, M., Efimova, O. & Breyer, C. Technico-economic evaluation of CO2 direct air collection installations. J. Clean. Prod. 224, 957-980 (2019).
Google Scholar
Sanz-Pérez, ES, Murdock, CR, Didas, SA & Jones, CW Direct CO capture2 ambient air. Chem. Tower. 116, 11840â11876 (2016).
Google Scholar
Salmón, I., Cambier, N. & Luis, P. CO2 capture by alkaline solution for the production of carbonate: comparison between a packed column and a membrane contactor. Appl. Sci. 8, 996 (2018).
Google Scholar
Maison, KZ et al. Economic and energy analysis of CO capture2 ambient air. Proc. Natl Acad. Sci. United States 108, 20428-20433 (2011).
Google Scholar
Fuhrman, J. et al. Food-energy-water implications of negative emission technologies in the + 1.5 ° C future. Nat. Clim. Switch ten, 920-927 (2020).
Google Scholar
Keith, DW, Holmes, G., St. Angelo, D. & Heidel, K. A CO capture process2 of the atmosphere. Joule 2, 1573-1594 (2018).
Google Scholar
Realmonte, G. et al. The answer to “The high energy and material requirements for direct air capture require further analysis and R&D.” Nat. Common. 11, 3286 (2020).
Google Scholar
Chatterjee, S. & Huang, K.-W. Unrealistic need for energy and materials for direct air capture in deep attenuation pathways. Nat. Common. 11, 3287 (2020).
Google Scholar
de Jonge, MM, Daemen, J., Loriaux, JM, Steinmann, ZJ & Huijbregts, MA Life cycle carbon efficiency of direct air capture systems with strong hydroxide absorbents. Int. J. Greenh. Gas control 80, 25-31 (2019).
Google Scholar
Liu, CM, Sandhu, NK, McCoy, ST & Bergerson, JA A Life Cycle Assessment of Greenhouse Gas Emissions from Direct Air Capture and Fischer-Tropsch Fuel Production. To support. Energy fuels 4, 3129â3142 (2020).
Google Scholar
Deutz, S. & Bardow, A. Life cycle evaluation of an industrial direct air capture process based on temperature-vacuum modulated adsorption. Nat. Energy 6, 203-213 (2021).
Google Scholar
Budinis, S. Direct air capture (International Energy Agency, 2020).
Negative emission technologies and reliable sequestration: a research program (Press of the national academies, 2019); https://doi.org/10.17226/25259
Hertwich, EG et al. Integrated life cycle assessment of electricity supply scenarios confirms the global environmental advantage of low carbon technologies. Proc. Natl Acad. Sci. United States 112, 6277-6282 (2015).
Google Scholar
McQueen, N. et al. Cost analysis of direct air capture and sequestration coupled with low carbon thermal energy in the United States. About. Sci. Technol. 54, 7542-7551 (2020).
Google Scholar
Bahar, H. & Bojek, P. Concentrated solar energy (CSP) (International Energy Agency, 2020).
Sandalow, D., Friedmann, J., McCormick, C. & McCoy, S. Direct capture of carbon dioxide from the air (Innovation for Cool Earth Forum, 2018).
Baciocchi, R., Storti, G. & Mazzotti, M. Process design and energy requirements for capturing carbon dioxide from the air. Chem. Ing. To treat. 45, 1047-1058 (2006).
Google Scholar
Singh, B., Strømman, AH & Hertwich, EG Comparative assessment of the impact of the CSC portfolio: a life cycle perspective. Energy Procedia 4, 2486-2493 (2011).
Google Scholar
Hanssen, SV et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Switch ten, 1023-1029 (2020).
Google Scholar
Querini, F., Dagostino, S., Morel, S. & Rousseaux, P. Greenhouse gas emissions from electric vehicles associated with wind and photovoltaic electricity. Energy Procedia 20, 391-401 (2012).
Google Scholar
Kätelhön, A., Meys, R., Deutz, S., Suh, S. & Bardow, A. Climate change mitigation potential of carbon capture and use in the chemical industry. Proc. Natl Acad. Sci. United States 116, 11187â11194 (2019).
Google Scholar
Gibon, T., Arvesen, A. & Hertwich, EG Life cycle assessment demonstrates environmental co-benefits and tradeoffs of low carbon electricity supply options. Renew. Support Energy Rev. 76, 1283-1290 (2017).
Google Scholar
Particle emissions excluding road transport exhaust: an ignored environmental policy challenge (Organization for Economic Co-operation and Development, 2020).
Heck, V., Gerten, D., Lucht, W. & Popp, A. Negative biomass emissions difficult to reconcile with planetary limits. Nat. Clim. Switch 8, 151-155 (2018).
Google Scholar
Creutzig, F. et al. Consider sustainability thresholds for BECCS in IPCC and biodiversity assessments. Glob. Change Biol. Bioenergy 13, 510-515 (2021).
Google Scholar
Gabrielli, P., Gazzani, M. & Mazzotti, M. The role of carbon capture and use, carbon capture and storage and biomass to enable net-zero-CO2 chemical industry emissions. Ind. Ing. Chem. Res. 59, 7033-7045 (2020).
Google Scholar
Davis, SJ et al. Net zero emission energy systems. Science https://doi.org/10.1126/science.aas9793 (2018).
Carton, W., Lund, JF & Dooley, K. Canceling equivalence: rethinking carbon accounting for simple carbon elimination. Before. Clim. https://doi.org/10.3389/fclim.2021.664130 (2021).
Kearns, J. et al. Develop a coherent database for regional geological CO2 storage capacity worldwide. Energy Procedia 114, 4697â4709 (2017).
Google Scholar
Arvidsson, R. et al. Environmental assessment of emerging technologies: recommendations for a prospective LCA. J. Ind. School. 22, 1286-1294 (2018).
Google Scholar
ISO 14044: 2006 Umweltmanagement â Ãkobilanz â Anforderungen und Anleitungen (International Organization for Standardization, 2006).
ISO 14040: 2006 Umweltmanagement â Ãkobilanz â Grundsätze und Rahmenbedingungen (International Organization for Standardization, 2006).
Direct air capture to help reverse climate change. Climeworks https://www.climeworks.com/page/co2-removal (2020).
von der Assen, N., Voll, P., Peters, M. & Bardow, A. Life cycle analysis of CO2 capture and use: a tutorial review. Chem. Soc. Tower. 43, 7982-7994 (2014).
Google Scholar
Hauschild, MZ et al. Identify existing best practices for characterization modeling in life cycle impact assessment. Int. J. Life cycle assessment. 18, 683-697 (2013).
Google Scholar
Holmes, G. et al. Results of the outdoor prototype for the direct atmospheric capture of carbon dioxide. Energy Procedia 37, 6079-6095 (2013).
Google Scholar
Pehnt, M. & Henkel, J. Life cycle assessment of carbon dioxide capture and storage of lignite-fired power plants. Int. J. Greenh. Gas control 3, 49-66 (2009).
Google Scholar
Steubing, B., Wernet, G., Reinhard, J., Bauer, C. & Moreno-Ruiz, E. The ecoinvent version 3 database (part II): analysis of LCA results and comparison with the version 2. Int. J. Life cycle assessment. 21, 1269-1281 (2016).
Google Scholar